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Assignment

REQUIRED READING

° Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its

applications, 4" edition. Prentice Hall, Upper Saddle River, NJ. 920 pp.

o Read Sections 4.1-4.3

o We won’t cover 4.4-4.7 on the geometric, negative binomial, and gamma
distributions in this course. There are some applications of these distributions in
environmental science, particularly the use of the negative binomial to model
aggregated plant distributions, but there is insufficient time to cover everything. I
provide the Matlab code for the examples and case studies.
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Understanding by Design Templates

Understanding By Design Stage 1 — Desired Results Week 4
LM Chapter 4 Special Distributions

G Established Goals

. Learn how to solve applied problems with Matlab’s pdf, cdf’s and inverse functions
for the Poisson, exponential and normal distributions

. Learn how to model individual behavior using the standard normal (Gaussian) curve.

. Describe the effects of sampling error and rounding on the expected values and

variances of computed values from observations (An MCAS 10™ grade standard)
U Understand

. Most statistical inference — frequentist & Bayesian — is based on the uniform,
binomial, Poisson, & Normal distributions

. The Poisson and Normal distributions were developed as approximations for the
binomial distribution but are useful themselves in modeling nature

. The Poisson model is the standard model for ‘random’ distributions of animals and
plants in nature.

. Increased precision of measurement is one of the benchmarks of scientific advance

and propagation of error is the ruler for the benchmark.
Q Essential Questions

. Why is the Poisson distribution so useful in modeling random events in nature?
. Is the normal distribution the foundation of all quantitative science?
. Is estimating the variance of a climate change prediction more important than

estimating its expected value?
K Students will know how to define (in words or equations)
. Poisson, exponential, Monte Carlo simulation, normal and standard normal
distributions, propagation of error, standard error, z-score and z-transform
S Students will be able to

. Write Matlab programs using the pdf, cdf and inverse distribution functions for the
binomial, Poisson, exponential and normal distributions

. Provide examples from their own fields of the Poisson, exponential & normal
distributions

. Be able to state to a layman the meaning of p values based on the distribution

functions for the binomial, Poisson & normal distributions
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Understanding by Design Stage II — Assessment Evidence Week 4 6/21-6/27

LM Chapter 4.1-4.3 (pages 274-316) Special Distributions

Post in the discussion section by 6/29/11 W

Find an application from the primary literature in your own field or your own
work using the Poisson or normal distributions. Hint: use Google scholar: e.g.,
search under ‘Coral abundances Poisson’). Describe the application and include
a citation or link if it is from the scientific literature

HW 4 Problems due Wednesday 6/29/11 W 10 PM

Each problem must be solved using Matlab

Submit your Matlab code as part a Word, Wordperfect or rtf document
summarizing the answer. [ must be able to run your Matlab code after a
simple cut-and-paste from your document to the Matlab editor

You must reach a 1-2 sentence conclusion about your result

Submit to the course Vista 8§ website

Basic problems (4 problems 10 points)

Problem 4.2.2 P. 280 Prescription errors

. Compare the Poisson limit approximation with the exact
probability from the binomial pdf

. Use Case Study 4.2.1 as a model

Problem 4.2.12 P. 287 Midwestern Skies Lost Bags

. Use Case Study 4.2.2 as a model

. Matlab hints

. Enter the data as BagsLost

. lambda=mean(BagsLost)

. k=[0:max(BagsLost)+4]’;

. ObservedF=hist(BagsLost,k);

. bar(k,ObservedF);figure(gcf)
Problem 4.3.20 Nevada nuclear weapons test p 306-307
. Use Example 4.3.5 (Memphis earthquakes as a model)
Problem 4.3.22 P 314 Children’s I1Q’s and school cost
. Use Example 4.3.6 (Drunk Driving, p 308-309) as a paradigm

Advanced problems (2.5 points each)

Problem 4.3.20 Nevada nuclear weapons: Graph both the Poisson pdf

and superimposed normal pdf

. Use Example the graph in Gallagher Example 4.3.5 as a model

Problem 4.3.22 p 314 Children’s I1Q’s and school cost

. Plot the pdf as in Figure 4.3.6 using Matlab’s fill function to fill
in the areas corresponding to special needs.

. Use Example 4.3.7 as a model

Master problems (1 only, 5 points)

What is the probability of observing 2 or more magnitude 5 earthquakes
within 1 degree latitude & longitude of Los Angeles next year
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php
Search database 1/1/73 to 12/31/10 (38 years); 33.05 to 35.05 lat;
-119.25 to -117.25 longitude
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Introduction

Chapter 4 is my favorite chapter in Larsen & Marx (2006). It also covers the Poisson distribution
which is the null model for random distributions in nature. The case studies and examples are
interesting, including the analysis of leukemia clusters in Niles Illinois (Case Study 4.2.1) and
the probability that you’ll be eating 5 or more insect parts with your next peanut butter and jelly
sandwich (Example 4.2.4).

Annotated outline (with Matlab scripts) for Larsen & Marx
Chapter 4

4 Special distributions
Lambert Adolphe Jacques Quetelet (1796-1874)
4.1 Introduction
4.1.1 To qualify as a probability model over a sample space S, a function
4.1.1.1 must be nonnegative for all outcomes in S an
4.1.1.2 must integrate to 1.
4.1.2 Not all functions qualify as a probability model.
4.2 The Poisson distribution
4.2.1.1 binomial distribution

p(k) = P(X=k) = (Z) pEA-py*

4.2.1.2 The Poisson limit

- Rl koq_,mk e ™ (np)*
lim ( k) p" (1-p) —

Poisson limit theorem (Larsen & Marx 2001 Theorem 4.2.1, p. 251) If n =~ and p —0 in
such a way that A = np remains constant, then for any nonnegative integer k,

-np k
LIM n k 1- n-k _ e (np) .
AN ( k)p (1-p) -

Example 4.2.1. Convergence of the Poisson, very good for n=100
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% LMex040201 4th.m -

% Example 4.2.1 in nasl

% Larsen & Marx (2006) Introduction to os| ||

Mathematical Statistics, 4th edition oasf

% Table 4.21 & Table 4.2.2 Larsen & Marx (2006, oz

p. 277) ::5

% Written by Eugene Gallagher for EEOS601 in D'W
2001, revised 1/9/11 ’ | I -

0 1 2 3 4 5 €

% Eugene.Gallagher@umb.edu K

% Comparing Poisson pdf and binomial pdf Figure 1. With n=5
p=1/5; (A=1), the Poisson approximation is just
n=5; adequate.

k =[0:n]}

lambda=1;

p_pdf = poisspdf(k,lambda);
p_pdf=[p_pdf;1-sum(p_pdf)];

b_pdf= binopdfik,n,p);

b _pdf=[b_pdf;l-sum(b_pdf)];

kdisp=[0:6]';

fprintf('Table 4.2.1\n")

fprintf("%f1.0 %5.3f %5.3f\n',[kdisp b_pdfp_pdf]");

% Plot as a grouped histogram "

bar(kdisp,[b_pdfp pdf],'grouped'); e f

axis([-.6 6.6 0 0.5])

legend('Binomial pdf','Poisson pdf') B

xlabel('k','Fontsize',14);

ylabel('Frequency','Fontsize',14) ol

title('Table 4.2.1','Fontsize',16);

figure(gcf);pause a o
p=1/100;
n=100; Figure 1. With
ndisp=[0:9]'; n=100 (A=1), the Poisson approximation is
k=[0:n]} very good.
lambda=1;

p_pdf = poisspdf(ndisp,lambda);
p_pdf=[p_pdf;1-sum(p_pdf)];
b_pdf= binopdf(ndisp,n,p);

b _pdf=[b_pdf;l-sum(b_pdf)];
kdisp=[0:10]";
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fprintf('Table 4.2.1\n")
fprintf("%f1.0 %5.3 %5.3f\n',[kdisp b_pdf p pdf])
% Plot as a grouped histogram
bar(kdisp,[b_pdfp_ pdf],'grouped");
legend('Binomial pdf','Poisson pdf','FontSize',16)
axis([-.6 10.6 0 0.4])
xlabel('k','FontSize',14);
ylabel('Frequency','FontSize',14)
title('Table 4.2.2','FontSize',16);

figure(gcf);pause
Table 4.2.1
Table 4.2.1 Binomial Probabilities and Poisson Table 4.2.2 Binomial Probabilities and Poisson Limits;
limits; n=5andp = i (A=1) n=100and p= ﬁ()\zl)

k (3:)(0.2)50.8)* | e{1)%k! k {199,)(0.01)%{0.99)00* el(1)¥/k!

0 0.328 0.368 0 0.366032 0.367879

1 0.410 0.268 1 0.269730 0.267879

2 0.205 0.184 2 0.184865 0.183940

3 0.051 0.061 3 0.060999 0.061313

4 0.006 0.015 4 0.014542 0.015328

5 0.000 0.003 5 0.0028598 0.003066

B+ 0 0.001 6 0.000463 0.000511

1.000 1.000 7 0.000063 0.000073

8 0.000007 0.000003

9 0.000001 0.000001

10 0.000000 0.000000

1.000000 0.999999

Figure 1. Table 4.2.1, Table 4.2.2

Example 4.2.2. Shadyrest hospital

% LMex040202 4th.m

% Example 4.2.2 Shady Rest Hospital cardiac monitoring machines, p. 277-288
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% There are 12,000 residents in the area served by Shady Rest Hospital and

% the probability that a resident will have a heart attack and need a

% montitor is 1/8000. There are 3 monitors available. What is the

% probability that the 3 monitors will be inadequate to meet the

% community's needs? That is, what is the probability of 4 or more heart

% attacks?

% Written by Eugene.Gallagher@umb.edu, Fall 2010

fprintf('Solved as the sum of binomial probabilities: %8.6f\n',...
1-sum(binopdf(0:3,12000,1/8000)))

fprintf('Or solved using the binomial cumulative distribution function: %8.6f\n',...
I-sum(binocdf(3,12000,1/8000)))

fprintf('Or solved using the Poisson distribution: %8.6f\n’,...
I-sum(poisspdf(0:3,12000/8000)))

fprintf('Or solved using the cumulative Poisson distribution: %8.6f\n',...


http:Eugene.Gallagher@umb.edu
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1-sum(poisscdf(3,12000/8000)))

Case Study 4.2.1 Leukemia in Niles Illinois

% LMcs040201 4th.m

% Case Study 4.2.1 Leukemia cancer cluster. Pp 278-279 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th Edition
% Written by Eugene D. Gallagher for UMASS/Boston's EEOS601

% Eugene.Gallagher@umb.edu, http://www.es.umb.edu/edgwebp.htm

% Written 10/1/2010; Revised 1/7/11

% p=incidence of leukemia in 5 1/3 years in towns around Niles IL

% What is the probability of observing 8 or more childhood leukemia cases
% by chance alone. Solve using the binomial pdf and the Poisson limit.

% N=number of people in Niles IL

N=7076;

p=24.8/1e5;

X=8:7076;X=X";

bp=binopdf(X,N,p);

BP=sum(bp); % or it could be solved using the complement

X2=0:7;

BP2=1-sum(binopdf(X2,N,p));

fprintf(...

"nFrom the binomial pdf, the exact probability of observing \n8 or more ')
fprintf('deaths among 7076 children in 5 1/3 years is %6.3g.\n',BP);
fprintf(...

'From the complement of the binomial pdf, the exact p of observing \n8 or")
fprintf(' more deaths among 7076 children in 5 1/3 years is %6.3g.\n',BP2);
% Now solve using the Poisson pdf;

% lambda is the expected number of cases among 7076 in Niles Illionois
lambda=7076*24.8e-5;

PP= 1-sum(poisspdf(X2,lambda));

fprintf(...

"nFrom the Poisson pdf, the approximate probability of observing \n8 or )
fprintf('more deaths among 7076 children in 5 1/3 years with a Poisson \n')
fprintf('expected value of %6.3g is %6.3g.\n\n',]Jambda,PP);

% Or, one could use the Poisson cumulative distribution function:

PCP = 1-poisscdf(7,lambda);

fprintf(...

'From the cumulative Poisson pdf, the approximate probability of \n')

fprintf(‘observing 8 or more deaths among 7076 children in 5 1/3 years ')

fprintf('with \na Poisson expected value of %6.3g is %6.3g.\n\n’,...
lambda,PCP);

RE=abs(BP-PP)/BP * 100;

fprintf(...

'The relative error in the Poisson approximation is %4.1f%%\n',RE)

Questions. p 279


http:Eugene.Gallagher@umb.edu
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4.2.1.3 The Poisson Distribution
4.2.1.3.1 First described by Poisson as a limit theorem and
then used in 1898 by Professor Ladislaus von
Bortkiewicz to model the number the Prussian
cavalry officers kicked to death by their horses.

Larsen & Marx 2001 Theorem 4.2.2, p. 251 The random variable X is said to have a

Poisson distribution if
e Mk
p(k) = P(X=k) =

k!

, k=0,12,..

4.2.1.4 Fitting the Poisson Distribution to Data

Case Study 4.2.2

% LMcs040202_4th.m

% Case Study 4.2.2 alpha decay & Geiger counter Page 282-284 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th Edition
% Written by Eugene Gallagher for EEOS601

% Eugene.Gallagher@umb.edu http://www.es.umb.edu/edgwebp.htm
% Written 11/4/2010, Revised 1/7/11

% Fitting the Poisson pdf to radioactive decay: alpha-particle
k=[0:11]}

Frequency=[57 203 383 525 532 408 273 139 4527 10 6]';
sumFrequency=sum(Frequency);
lambda=sum(k.*Frequency)./sumFrequency;

fprintf('The Poisson parameter is %5.3f\n',Jambda)
ObservedP=Frequency./sumFrequency;
ExpectedP=poisspdf(k,lambda);

TableData=[k Frequency ObservedP ExpectedP];
fprintf("\n\t\t\t\t\t Table 4.2.3\n")

fprintf('No. Detected, k \tFrequency \tProportion \tp_x(k)\n")

fprintf("  %2.00\t\t\t\t%2.0£\t\t\t%5.3f\t\t%5.3f\n', TableData');

% Using concepts from Chapter 5, a MLE fit could be made of the data:

% The only new feature added is a 95% CI for the binomial parameter.

% See LMcs050201 4th.m for another example of using Poisspdf to fit

% the Poisson distribution to data

%

DATA=[zeros(57,1);0nes(203,1);2*ones(383,1);3*ones(525,1);4*ones(532,1);...
5*ones(408,1);6*ones(273,1);7*ones(139,1);8*ones(45,1);...
9*ones(27,1);10*ones(10,1);11*ones(6,1)];

[LAMBDAHAT, LAMBDACI] = poissfit(DATA,0.05);

fprintf(...
"nThe Poisson parameter =%5.3f, with 95%% CI: [%5.3f %5.3f]\n\n’,...
LAMBDAHAT, LAMBDACI)


http://www.es.umb.edu/edgwebp.htm
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Case Study 4.2.3

% LMcs040203 4th.m

% Fitting football fumbles to a Poisson pdf

% From Larsen & Marx (2006) Introduction to Mathematical Statistics

% 4th edition.

% Written by Eugene.Gallagher@umb.edu

% Revised 11/4/2010

% See LMcs040202_4th.m (alpha decay) for a very similar program

k=[0:7]";

Frequency=[8 24 2720 17 103 1]

sumFrequency=sum(Frequency);

meank=sum(k.*Frequency)./sumFrequency;

fprintf("The Poisson parameter is %5.3f\n',meank)

ObservedP=Frequency./sumFrequency;

ExpectedP=Poisspdf(k,meank);

TableData=[k Frequency ObservedP ExpectedP];

fprintf("\n\t\t\t\t\t Table 4.2.5\n")

fprintf('No. Detected, k \tFrequency \tProportion \tp_x(k)\n')

fprintf("  %2.00\\\t\t%2.00\t\t\t%5.3f\t\t%5.3f\n', TableData');

% Using concepts from Chapter 5, a MLE fit could be made of the data:

% The only new feature added is a 95% CI for the binomial parameter.

% See LMcs050201 4th.m for another example of using Poisspdf to fit

% the Poisson distribution to data

%

DATA=[zeros(8,1);ones(24,1);2*ones(27,1);3*ones(20,1);4*ones(17,1);...
5*ones(10,1);6*ones(3,1);7];

[LAMBDAHAT, LAMBDACI] = poissfit(DATA,0.05);

fprintf(...
"nThe Poisson parameter =%5.3f, with 95%% CI: [%5.3f %5.3f]\n\n’,...
LAMBDAHAT, LAMBDACI)

4.2.1.5 The Poisson Model: the law of small numbers
42.15.1.1 Assumptions of the Poisson model

4.2.1.5.1.1.1 The probability that 2 or more events
occur in any given <small>
subinterval is essentially 0.

4.2.1.5.1.1.2 Events are independent

4.2.1.5.1.1.3 The probability that an event occurs
during a given subinterval is constant
over the entire interval from 0 to T.
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4.2.15.2 Calculating Poisson Probabilities
4.2.15.2.1 “Calculating Poisson probabilities is an
exercise in choosing T so that AT represents
the expected number of occurrences in
whatever “unit” is associated with the
random variable X.

Example 4.2.3

% LMex040203 4th.m

% Example 4.2.3 Typographical Errors Page 285 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th Edition
% Written by Eugene Gallagher for EEOS601

% Eugene.Gallagher@umb.edu http://www.es.umb.edu/edgwebp.htm
% Written 1/7/2011, Revised 1/7/11

% Using the Poisson pdf

% ErrorRate=typographical Errors per page

% What is the probability that fewer than three typos will appear ina 16
% page edition.

% X=Number of errors

ErrorRate=0.4;

lambda=ErrorRate*16;

fprintf('Using the Poisson cumulative distribution function:\n')
P=poisscdf(2,lambda);

fprintf('The probability that fewer than 3 typos will appear in a \n')
fprintf(...

'"16-p document with an error rate of %3.1f per page is %5.3f.\n’,...
lambda,P)

fprintf("\nUsing the Poisson probability distribution function:\n")
X=0:2;

P=sum(poisspdf(X,lambda));

fprintf('lf the Poisson parameter = %3.1f, the probability of \n',Jambda)
fprintf('fewer than 3 typos = %5.3f.\n',P)

Example 4.2.4 Insect parts in peanut butter
e -6.0 (60)k

4
P(Eating 5 or more bug parts|h =6) = P(X>5) =1 - P(X<4) =1 - o
k=0 !

% LMex040204 4th.m

% Example 4.2.4 Eating bug parts

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu, 12/12/10, revised 1/12/11

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% This is a simple application of the Poisson cumulative distribution

% function and Poisson pdf

% The FDA Food Detection Action Limit for peanut butter is 30 insect

% fragments per 100 grams. If your peanut butter snack weighs 20 grams,

% what is the probability that you'll ingest 5 or more insect parts.


http://www.es.umb.edu/edgwebp.htm
http:Eugene.Gallagher@umb.edu
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
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% Calculate lambda, the expected number of insect parts per 20 grams.
lambda=30/100%*20;

% solve using the Poisson cumulative distribution function.
P=1-poisscdf(4,lambda);

fprintf(...

'The probability that a 20-g snack contains 5 or more insect parts is %5.3f.\n',P)
% The problem could also be solved exactly using the Poisson pdf.

k=0:4;

P2=1-sum(poisspdf(k,lJambda));

fprintf(...

'The probability that a 20-g snack contains 5 or more insect parts is %5.3f.\n',P2)

S
Sum of Poisson processes is a Poisson process:
- ) k
e Ay +A
P(x=k) = k('l ) Lk =0,1,2,..

Questions Page 287
4.2.10 Prussian horse kicks.
4.2.12 Midwestern Skies Airlines bags lost

Sum of two Poisson variables is Poisson
- Ay k
e A A
P(x=k) = k(' 1*h) Lk =0,12,..

4.2.2 Interval between events: the Poisson/Exponential
Relationship

Theorem 4.2.3 P. 290

Suppose a series of events satisfying the Poisson model are occurring at a rate of A
per unit time. Let the random variable Y denote the inteval between consecutive
events. Then Y has the exponential distribution: £,0) =4 ey
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126 | 73 | 3 6 a7 | 23
73 123 |2 65 |94 [51
26 |21 |6 68 |16 | 20
6 18 | 6 41 |40 |18

41 |11 (12 |38 |77 |61
26 | 3 38 | 50 91 |12

Toanswerthat question requires that the data be reduced to a density-scaled histogram and
superimposed on a graph of the predicted exponential pdf. Table below details the construction of the
histogram. Notice in Figure below that the shape of that histogram is entirely consistent with the
theoretical model—f,(y) = 0.027e %7 — stated in Theorem4.2.3.

Interval (mos), y Frequency Density
0 =y<20 13 0.0181
20 =y=40 9 0.0125
40 =y=60 =1 0.0069
60 =y<=3a0 5] 0.0083
80 =y<=100 2 0.0028
100 =y =120 0 0.0000
120 =y <140 1 0.0014

36

0 20 40 60 80 100 120 140
Interval between eruptions (in months)

Figure 2.

Case Study 4.2.4
% LMcs040204 4th.m 0.02
% Case Study 4.2.4 Mauna Loa
eruptions & exponential distribution
P 290-291 0.01
% in Larsen & Marx (20006)

Introduction to Mathematical

ohe -0.027y
. f (¥)=0.027:
Density i ) €

Statistics 4th Ed. 0 20 20 60 80 100 120 140
% Written by Eugene Gallagher f()r Interval between eruptions (in months)
EEOS601

Figure 3.
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% Eugene.Gallagher@umb.edu http://www.es.umb.edu/edgwebp.htm

% Written 1/7/11, Revised 1/7/11

% Fitting the exponential pdf to intervals between eruptons

% Data = interval between 37 consecutive eruptions of Mauna Loa

DATA=[126 733 6 37 23

73232659451

2621 6681620

6186414018

41 11123877 61

263385091 12];

DATA=DATAC();

lambda=0.027;

fprintf('Eruptions occuring at %5.3f per month or once every %3.2f",...
lambda,1/(12*lambda))

fprintf(‘years.\n")

% histc is the Matlab counting function

% Plot the data using LMFig030402 4th.m as a model

ObservedI=histc(DATA,0:20:140);

bar(0:20:140,0bservedl/(sum(Observed])*20),'histc");

set(get(gca,'Children'),FaceColor',[.8 .8 1])

axis([0 145 0 0.033]);

figure(gcf)

xlabel('Interval between eruptions (in months)')

ylabel('Density")

axl=gca; % get the handle for the bar chart's axes;

pause

y=0:140;

fy=lambda*exp(-lambda*y);

h2=line(y,fy,'Color",'r'", LineStyle',--','Linewidth',2);

set(ax1,'YTick',[0:0.01:0.03])

text(34,0.015,'f y(y)=0.027¢"{-0.027y}")

title('Figure 4.2.3")

figure(gcf)

pause

Example 4.2.5:

% LMex040205 4th.m

% Example 4.2.5 page 292 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601

% If the Perseid meteor shower has a rate of 40 per hour, Poisson

% distributed, calculate the probability that someone would have to wait 5
% minutes before seeing another.

% y= interval in minutes between consecutive sightings

% Using the symbolic math toolbox


http://www.es.umb.edu/edgwebp.htm
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fprintf('"Exact P=\n")

syms y; disp(int(40/60*exp(-40/60*y),5,inf))
P=eval(int(40/60*exp(-40/60*y),5,inf));

fprintf('If the Perseids have a Poisson parameter = 40/60 per min., \n')
fprintf('an observer would have p=%6.4f of waiting 5 or more \n',P)
fprintf('minutes between consecutive meteors.\n')

4.3 THE NORMAL DISTRIBUTION

Figure 4.3.1 02
% LMFig040301 4th.m

% Page 293 in Larsen & Marx (2006) 0.15
Introduction to Mathematical Statistics probability
% 4th edition 01 |
% Generate 20 binomial random numbers,
p(success)=0.5 0.0s|

% Written in 2001 by
Eugene.Gallagher@umb.edu, revised 1/7/11
% Use the statistical toolbox's binornd.m
X=0:20;n=20;p=0.5;

Y = binopdf(X,n,p);

bar(X,Y,1);axis([0 21 0 0.2]);title('Figure 4.3.1','FontSize', 14);
set(get(gca,'Children'),'FaceColor',[.8 .8 1])

ylabel('Probability','FontSize',14);
ax1=gca;set(ax1,'xtick',0:2:20,'FontSize',12);
set(ax1,'ytick',0:0.05:0.2,'FontSize',12)

figure(gcf);pause

% Superimpose the normal probability pdf:

% The normal probability equation is provided on p. 293

% This is for mean 0, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
% fly_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)"2)
mu_j=n*p;

sigma_j=sqrt(n*p*(1-p)); % sigmaj is the standard deviation

y_j=0:0.2:20;

fy j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu j)./sigma j)."2)

% fyj=1/(sqrt(2*p1)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).”2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

h1l=line(y j,fy j,'Color"'r",'Parent',ax1,'Linewidth',2);
set(h1,linestyle','--','color’,'r", linewidth',2)

xlabel("),ylabel('Probability")

title('Figure 4.3.1")

figure(gcf);pause

Figure 4.3.1
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4.3.1 Theorem 4.3.1 Let X be a binomial random variable defined on n
independent trials for which p=P(success). For any numbers a and b

1
/%

b
LIMP|a <X b) = f e 7z,
o vap (1-p) a
. 1 -z2p
Comment: The function f(z) = — e

/2x

. is referred to as the standard normal (or

Gaussian) curve [or distribution]. By convention, any random variable whose
probabilistic behavior is described by a standard normal curve is denoted by Z (rather
than by X, Y, or W)... E(Z)=0 and Var(Z)=1. Page 294 in Larsen & Marx (2006)

4.3.2 Finding areas under the standard normal curve

Figure 4.3.2 Figure 4.3.2

% LMFig040302_ 4th.m 0.4f
% Larsen & Marx Figure 4.3.2 plot,
page 295

% Use LMex040308 4th.m as a

model <
% Larsen & Marx (2006) 021
Introduction to Mathematical
Statistics, 4th edition 0.1t
% Page 267

% Standard normal distribution

Area =0.8729

using ezplot 32
% Integration using the symbolic

math toolbox Figure 4. Figure 4.3.2
% Written by

Eugene.Gallagher@umb.edu

% October 1, 2010

clear all

hold off; cIf

syms z

% Just for fun, use symbolic math integration to find the integral
INTP=eval(int(1/sqrt(2*pi)*exp(-(z"2/2)),-inf,1.14))

% or use the standard normal cumulative distribution function:
intp=normcdf(1.14)

% Plot Figure 4.3.2
mu=0;

sigma=1;
X=-3.5:0.1:3.5;
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Y = normpdf(X,mu,sigma);

plot(X,Y,'--1');

axis([-3.553.55 0 0.41]);

title('Figure 4.3.2','FontSize',16);

axl=gca;

xlabel('"),

ylabel('f z(z)','FontSize',14);

axl=gca;

set(ax1,XTick',[-3 -2 -1 0 1.14 2 3] ,'FontSize',12,...
"XTickLabel', {'-3',-2"'-1''0",'1.14",'2",'3'} ,'FontSize',12)

set(ax1,'ytick',0:.1:0.4,'FontSize',12)

hold on;

xf=-3.5:.01:1.14;yf=normpdf(xf,mu,sigma);

fill([-3.5 xf 1.14],[0 yf 0]",[.8 .8 1])

hold off;
4.3.3 The continuity correction
Shaded area =P (c<X<d)
f
)
1
7
Figure 4.3.3
it seems clear from the diagram that the approximation woulld be better if the integration extended
fromc- i (where the histogram areas actually begin) to d +§(where the histogram areas actually end).
Thatis, we should write
at
PlceXsd)= fc_ffy(y)dy
2
Replacing the limits ¢ and d with ¢ - % andd+ % is referred to as the continuity correction. Such an
adjustmentis appropriate in the application of Theorem4.3.1 because the discreteness of the binomial
randomvariable X necessarily implies that
X—np
Plas———=<b)=P(c<X<d)
Vp(1-p)
where cand d are integers.
Figure 5. Figure 4.3.3, the continuity correction
Example 4.3.1

% LMex040301 4th.m

% Example 4.3.1, Overbooking airline seats; Application of the normal

% distribution and the continuity correction. Page 297 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher, http://www.es.umb.edu/edgwebp.htm

% Written Fall 2010, Revised 1/7/11

% 178 seats sold for 168 economy class seats available, p=0.9 passenger

% will show up. What is the probability that not everyone who shows up at
% the gate on time can be accomodated?

n=178;p=0.9;n2=169;
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P=normcdf((n+0.5-n*p)/sqrt(n*p*(1-p)))-...
normcdf((n2-0.5-n*p)/sqrt(n*p*(1-p)));
fprintf(...

"nP not all can be accomodated, with continuity correction = %6.4f.\n',P)
% Without the continuity correction:
P2=normcdf((n-n*p)/sqrt(n*p*(1-p)))-...

normedf((n2-n*p)/sqrt(n*p*(1-p)));
fprintf(...
'P not all can be accomodated, without continuity correction = %6.4f.\n',P2)
k=169:178;
% Solve as a binomial pdf
P3 = sum(binopdf(k,n,p));
fprintf{(...
'P not all can be accomodated, exact binomial = %6.4f.\n',P3)

P4 = binocdf(n,n,p)-binocdf(n2-1,n,p);

fprintf(...

'P not all can be accomodated, exact binomial cdf = %6.4f.\n',P4)

Case Study 4.3.1 ESP

% LMcs040301 4th.m

% Case Study 4.3.1 ESP P 298 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene Gallagher for EEOS601

% Eugene.Gallagher@umb.edu, http://www.es.umb.edu/edgwebp.htm
% Thirty two students correctly guessed 12,489 times out of 60,000

% when the expected number of successes would be just 12,000. What is
% the probability of this occuring by chance.

k=12489;

n=6¢4;

p=1/5;

P1=1-binocdf(k,n,p);

fprintf("nUsing the binomial cdf, the exact P = %9.7g\n',P1)
X=(12488.5-n*p)/sqrt(n*p*(1-p));

P2=1-normcdf(X);

fprintf('Using the Normal approximation with the continuity \n')
fprintf('correction, the exact P = %9.7g\n',P2)
X=(12489-n*p)/sqrt(n*p*(1-p));

P3=1-normcdf(X);

fprintf('Using the Normal approximation without the continuity \n')
fprintf('correction, the exact P = %9.7g\n',P3)

Questions Page 299
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434 Central Limit Theorem (p 301)
Central limit theorem
Every binomial random variable X can be written as the sum of n independent Bernoulli random
variables X, X,, ..., X, where X =1 with probability P and 0 with probability 1-p, but if
X=X,+X,+...#X,, Theorem 4.3.1 can be reexpressed as

LIM P

n—co

a <

X+ X,+..+X -np b ]
<

= L } e—ZZ/ZdZ
Jnp(1-p) V2n

The Russian Lyapunov made many of the key advances, and, in 1920, George Polya called it the
central limit theorem.

Theorem 4.3.2, p 273 Let W,,W,, ... be an infinite sequence of of independent random variables
with the same distribution. Suppose that the mean p and the variance o of f,(w) are both finite.
For any numbers a and b.

LIM P

N0

W o+ .. +W -
< 1 n np < b] — _f —22/2dz

yno Vam o,

Comment The central limit theorem is often stated in terms of the average of W,, W,, ..., and
W,, rather than the sum. Theorem 4.3.2 can be stated in equivalent form

- b
UETIYS [
oh/n V2 4,

LIM P

n-oo

Example 4.3.2

% LMEx040302_4th.m ‘ , Example432:n= §and samples= 40.
% Larsen & Marx Example 4.3.2;
Example of the central limit theorem
% Page 302-303
% Larsen & Marx (2006) il
Introduction to Mathematical
Statistics, 4th edition

% Integration to find the variance of 1
a uniform pdf using the symbolic ﬁ S
math ' ' ' " ziawo

% toolbox

% Written by
Eugene.Gallagher@umb.edu as
LMex040302 3rd.m in 2001

% revised 1/8/11

% See also LMEx040304 4th.m on
rounding for variance of uniform pdf

Figure 5. Example 4.3.2 Page 302 in Larsen & Marx
(2006). 40 samples of 5 uniformly distributed random
numbers after conversion to Z scores. The fit to the normal
distribution is quite good even though each of the 40
samples is based on only 5 uniformly distributed numbers.
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% See also LMEx040304 3rd.m on rounding for variance of uniform pdf

% Generate 40 sets of 5 uniform random numbers as in Table 4.3.2, p 302
% Figure in Table 4.3.2 uses 7 bins and 40 samples;

% Try 1000 samples and numbins=20 for a prettier plot

n=5;samples=40; numbins=7; % Numbins for the histogram, multiple of 7
% n=5;samples=1000; numbins=14; . Bample432:n= 5andsamples=1000.
% Numbins for the histogram,
multiple of 7
% n=100;samples=1000;

numbins=14; % Numbins for the 5
histogram, multiple of 7 ;
% n=1000;samples=500;

numbins=14; % For the histogram

% n=1000;samples=40; numbins=7; o
% For the histogram T Y ame
C=rand(samples,n); Figure 6. Example 4.3.2 Page 302 in Larsen & Marx
Co=sum(C")’; % sums of n replicates (2006). 1000 samples of 5 uniformly distributed random
% Use symbolic math toolbox to numbers after conversion to Z scores. The number of bins
calculate the variance of a uniform jncreased from 7 to 14 for this bar chart. The normal

0.3

0.1

% random distribution distribution provides an excellent fit even though each of
mu=0.5; 1000 means is based on only 5 cases drawn from a uniform
syms fzy distribution. The uniform distribution is symmetric,

ym

disp(‘Definite integral (0,1) of y*2')  allowing a rapid convergence to the normal distribution.
int(y*2,0,1)

EYsqg=int(sym(y”"2),0,1);

VARY=EYsq-mu"2;

disp("Var of a uniformly distributed random number on the interval (0,1):")
disp(VARY)

vary=eval(VARY); % convert from symbolic to numeric

% The variance is 1/12

% The Z ratios of the sums are in column C7 of Table 4.3.2
C7=(C6-n*mu)./(sqrt(n)*sqrt(vary));

Table040302=[[1:samples]' C C6 C7];

if n==5 % Reproduce Table 4.3.2

fprintf(’ Table 4.3.2\n")

fprintf" yl y2 y3 y4 y5 'y Z-ratio\n);

fprintf('%2.0f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n', Table040302");
end

% Use the code on page 5-115 of Statistics toolbox to draw histogram:
binwidthscaling=7/numbins; % This will produce 7 bins (3.5-(-3.5))
edges=-3.5:binwidthscaling:3.5;N=histc(C7,edges);
bar(edges,N/sum(N)/binwidthscaling,1);

axl=gca;

set(get(gca,'Children'),FaceColor',[.8 .8 1])
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axis([-3.6 3.6 -0.005 0.53])
ylabel('Density’,'FontSize',14);xlabel('Z-ratio")

set(ax1,'xtick',edges, FontSize',12);

set(ax1,'ytick',0:0.1:0.5,'FontSize',12) _ Example432n=1000and samples=500.
figure(gcf);pause
% Superimpose the normal
probability pdf:

% The normal probability equation 2
is provided on p. 293

% This is for mean 0, and unit
standard
% deviation. The more general
equation (Legendre & Legendre,

3/998 p- 147)is: Figure 7. Example 4.3.2 Page 302 in Larsen & Marx
0 . . .
. s ) (2006). 1000 samples of 500 uniformly distributed random
= Ky i) K % _
g};—ﬁ .1/(sqrt‘(% 'p1) 51gr/1\12a_J) exp(-1 numbers after conversion to Z scores. The number of bins
((y_j-mu_j)/sigma_j)"2) increased from 7 to 14 for this bar chart. The fit of the

H,lu—jzo,;_ 1 % siemas is th dard normal distribution is excellent as would be expected from
sigmha_J=1, 7o SIgmaj 15 the standard large number of cases (500) on which each mean is
deviation; = 1 after Z transform based

y j=-3.5:0.1:3.5; '

fy j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j)."2);

% fyj=1/(sqrt(2*p1)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).”2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

h1=line(y j,fy j ,'Color,'t',/Parent',ax1, Linewidth',2);
set(h1,linestyle','--','color’,'r", linewidth',2)

s=sprintf('Example 4.3.2: n=%4.0f and samples=%3.0f.",n,samples);
title(s)

figure(gcf);pause

% LMex040302_logrnd_4th.m

% Larsen & Marx Example 4.3.2; —Demee i3z ognemal 17 S andsmpes oy

Example of the central limit theorem ]

using

% lognormally distributed variables, .

instead of uniform

% Page 302-303 -

% Larsen & Marx (2006) F

Introduction to Mathematical e

Statistics, 4th edition

% Integration to find the variance of Figure 8. Example 4.3.2 Page 302 in Larsen & Marx

a uniform pdf using the symbolic ~ (2006). 40 samples of 5 lognormally distributed (p=1,

math o=1) random numbers after conversion to Z-scores. The

% toolbox normal approximation is quite poor. Because each of the
40 samples is based on a mean of only 5 cases.

05 )
Z-ratio
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% Written by Eugene.Gallagher@umb.edu as LMex040302 3rd.m in 2001
% revised 1/8/11

% See also LMEx040304 4th.m on rounding for variance of uniform pdf
% See also LMEx040304 3rd.m on rounding for variance of uniform pdf

% Generate 40 sets of 5 uniform random numbers as in Table 4.3.2, p 302
% Figure in Table 4.3.2 uses 7 bins e 3 e, (O e
and 40 samples; T
% Try 1000 samples and 7 Lo
numbins=20 for a prettier plot N !
% n=5;samples=40; numbins=7; %
Numbins for the histogram, multiple
of 7

n=5;samples=1000; numbins=14; %
Numbins for the histogram, multiple

05 )
Z-ratio

of 7 Figure 9. Example 4.3.2 Page 302 in Larsen & Marx

% n=100;samples=1000; (2006). 1000 samples of 1000 lognormally distributed
numbins=14; % Numbins for the (u=1, 0=1) random numbers after conversion to Z scores. |
histogram, multiple of 7 used 14 bins for this bar chart. Even for the highly

% n=1000;samples=1000; asymmetrically lognormally distributed samples, the

numbins=14; % For the histogram  normal approximation is excellent because of the large
% n=1000;samples=40; numbins=7; number of cases (1000) on which each mean was based.
% For the histogram
lognormal=0;
% This example calculates the z scores based on the parametric mean and
% variance for the underlying distributions. For the uniform distribution,
% the variance is calculated from the variance of the distribution to be
% 1/12. For the lognormal distribution, lognstat is the built-in Matlab
% function that will covert the mean and variance from the log scale to the
% standard scale.
if lognormal
mu=1;var=1;
C=lognrnd(1,1,samples,n);
[mu,vary]=lognstat(1,1);
s=sprintf('Example 4.3.2: Lognormal, n=%4.0f and samples=%3.0f.",n,samples);
s2=sprintf('Example 4.3.2: Lognormal distribution, 1st sample, n=%4.0f',n);
else
C=rand(samples,n);
mu=0.5;
% Use symbolic math toolbox to calculate the variance of a uniform
% random distribution
syms fzy
disp('Definite integral (0,1) of y"2")
int(y*2,0,1)
EYsqg=int(sym(y"2),0,1);
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VARY=EYsq-mu"2;
disp(...
'Var of a uniformly distributed random number on the interval (0,1):")
disp(VARY)
vary=eval(VARY); % convert from symbolic to numeric
% The variance is 1/12
s=sprintf('Example 4.3.2: Uniform, n=%4.0f and samples=%#4.0f.",n,samples);
s2=sprintf('Example 4.3.2: Uniform distribution, 1st sample, n=%4.0f,n);
end
C6=sum(C")'; % sums of n replicates
% The Z ratios of the sums are in column C7 of Table 4.3.2
C7=(C6-n*mu)./(sqrt(n)*sqrt(vary));
Table040302=[[1:samples]' C C6 C7];
ifn==5 % Reproduce Table 4.3.2
fprintf(' Table 4.3.2\n")
fprintf" yl y2 y3 y4 y5 'y Z-ratio\n);
fprintf('%2.0f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n', Table040302");
end

% Use the code on page 5-115 of Statistics toolbox to draw histogram:
% Draw a histogram of one row of data;

hist(C(1,2));

axl=gca;

set(get(gca,'Children'),'FaceColor',[.8 .8 1])
ylabel('Frequency','FontSize',16);x1abel("X",'FontSize',16)
title(s2,'FontSize',20)

figure(gcf);pause

% histogram of the z scores

binwidthscaling=7/numbins; % This will produce 7 bins (3.5-(-3.5))
edges=-3.5:binwidthscaling:3.5;N=histc(C7,edges);
bar(edges,N/sum(N)/binwidthscaling,1,'histc");

axl=gca;

set(get(gca,'Children'),FaceColor',[.8 .8 1])

axis([-3.6 3.6 -0.005 1.05*max(N/sum(N)/binwidthscaling)])
ylabel('Density','FontSize',16);xlabel('Z-ratio','FontSize',16)
set(ax1,'xtick’,edges, FontSize',14);
set(ax1,'ytick',0:0.1:0.7,'FontSize',14)

figure(gcf);pause

% Superimpose the normal probability pdf:

% The normal probability equation is provided on p. 293

% This is for mean 0, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)"2)
mu_j=0;
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sigma_j=1; % sigmaj is the standard deviation; = 1 after Z transform
y j=-3.5:0.1:3.5;

fy j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu j)./sigma j)."2);

% fyj=1/(sqrt(2*p1)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).”2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

hl=line(y j,fy j ,'Color,'t',/Parent',ax1, Linewidth',2);

set(h1,linestyle','--','color’,'r", linewidth',2)

title(s,'FontSize',20)
figure(gcf);pause

Example 4.3.3
% LMex040303 4th.m
% Example 4.3.3 Pp 304 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% An application of the symbolic math integration functions
% Typo in book:
% £ y(y)=y* 3*(1-y)"2 not fy(y)=3*(1-y)"2
Syms y
% f y(y)=y* 3*(1-y)"2, 0<=y,=1; Let mean y = (1/15)*Sum from 1 to 15 Yi.
int(y*3*(1-y)"2,0,1)
muy=eval(int(y*3*(1-y)"2,0,1));
% by definition of variance
int(y"2*3*(1-y)*2,0,1)-1/4"2
vary=eval(int(y"2*3*(1-y)"2,0,1)-1/4"2);
P=normcdf((3/8-muy) / (sqrt(vary)/sqrt(15)))-...
normedf((1/8-muy) / (sqrt(vary)/sqrt(15)))

Example 4.3.4

% LMEx040304 4th.m

% Example 4.3.4 Effects of rounding analyzed with normal approximation
% Effect of rounding on the expected value and variance of rounded

% estimates. P. 304 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Using the central limit theorem, what is the probability that the error

% on 100 transactions, each rounded to the nearest $100, would exceed $500?
% What is the variance of a uniformly distributed random number

% over the interval -50 to 50?

% From definition of Variance:

% Var(Y)=E[(Y-mu)"2]= integral from -50 to 50 {(y-mu)"2 { y(y)} dy.

% mu=0;

% f y(y)=1; This is the height of the uniform pdf at each value of y.

% for max(y)-min(y)=1, the value of f y(y)is I.

% for uniform random numbers spread over different ranges,

% for max(y)-min(y)*f y(y) must equal 1.

% thus, for a uniform random number distributed on the interval -100 to 100,
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% f y(y)=1/200;
% Written by Eugene.Gallagher@umb.edu for EEOS601
% http://www.es.umb.edu/edgwebp.htm
% Written in 2001, revised 1/9/11
% The m.file goes through some applications of the symbolic math toolbox at
% the beginning to verify that the variance of 100 rounded transactions is
% 2500/3
format rat
syms y mu
int(y"2/100,-50,50)%Use the symbolic math toolbox to find the
% variance

% of a uniformly distributed variable on the interval

% -50 to 50; it is 2500/3
VarY=eval(int(sym('y"2/100"),-50,50))
% Variance of a uniform randomly distributed number
% on the interval -50 to 50 is 2500/3
% Note how the variance remains 2500/3 with a shift in mean:
% Var(Y)=E(Y"2)-mu”"2;
mu=50;
int(y*2/100,0,100)
EYsqg=eval(int(sym('y*2/100"),0,100))
% The previous statement produces 10,000/3 which produces an identical
% variance after subtracting the square of the expected value, mu”2, as is
% appropriate from the definition of variance.
VARY=EYsq-mu"2
% Note that Var(Y) is also defined as
% integral -inf to inf (y-mu).”2 { y(y) dy.
% We can create the definite integral of this equation and evaluate it
% to produce the variance
syms y, mu; mu=>50;
VARY2=eval(int(sym('(y-mu)"*2/100"),y,0,100))
% VARY2 should also be 2500/3
format
% using Theorem 3.13.12, in Larsen & Marx (2001, p. 223)
% Calculate the variance of all 100 transactions (multiply the variance by
% 100). Note, this is for 100 indepedently distributed random variates,
% where the positive and negative errors among transactions are not
% correlated.
Varall=100*VARY;
% If you wanted to convert the variance, calculated here in dollars to the
% variance in pennies, you'd have to use Theorem 3.13.1, p. 222. It would
% the variance of Varall in pennies would be a=100;Var(a*Varall)=a"2 * Varall
% =10000 * Varall
% calculate the standard deviation;
sigmaall=sqrt(Varall);
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% Calculate the Z statistic

Z=zeros(2,1);

Z(1)=(-500-0)/sigmaall;

Z(2)=(500-0)/sigmaall

% Use the cumulative normal probability function to find the probability of
% being more than $5 dollars off after 100 transactions:
P=1-(normcdf(Z(2))-normcdf(Z(1)))

fprintf('The probability of being more than $500 off after 100\n")
fprintf('transactions in which each transaction is rounded to the \n')
fprintf(‘nearest $100 is %6.4f\n",P)

Example 4.3.5

% LMex040305 4th.m

% Example 4.3.5 Memphis earthquakes and the Poisson distribution

% Pp 305-306 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 1/8/11

% Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Annual earthquakes registering 2.5 on the Richter scale and within 40

% miles of downtown Memphis have a Poisson distribution with lambda=6.5
% Calculate the exact probability that nine or more such earthquakes will
% strike next year using the Poisson distribution and compare that with the
% normal approximation based on the central limit theorem.

lambda=6.5;

N=9;

P=1-poisscdf(N-1,lambda);

fprintf("\nThe exact p value using the Poisson cumulative distribution ')
fprintf("function with lambda=%5.3f is %7.4f.\n',lambda,P)
P2=1-normcdf(((N-1)-lambda)/sqrt(lambda));

fprintf("\nThe approximate p value using the central limit theorem is ')
fprintf('%7.4f.\n',P2)

continuity=0.5;

% "The continuity correction is appropriate whenever a discrete probability
% model is being approximated by the area under a curve.)
P3=1-normcdf(((N+continuity-1)-lambda)/sqrt(lambda));

fprintf("nThe approximate p value using the central limit theorem with ');
fprintf('the continuity correction is ')

fprintf("%7.4f\n',P3)

% Optional: plot the Poisson pdf and the normal approximation

% Use LMFig040301 4th.m as a model

X=0:18;

Y = poisspdf(X,lambda);

bar(X,Y,1);axis([-0.6 19 0 0.2]);title('Example 4.3.5'",'FontSize',14);
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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ylabel("Probability’,'FontSize',14);
axl=gca;set(ax1,'xtick’,0:2:18,'FontSize',12);
set(ax1,'ytick',0:0.05:0.2,'FontSize',12)

figure(gcf);pause

% Superimpose the normal probability pdf:

% The normal probability equation is provided on p. 293

% This is for mean 0, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147):
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)"2)
mu_j=lambda,;

sigma_j=sqrt(lambda); % sigmaj is the standard deviation
y_j=0:0.2:18;

fy j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j)."2);
% tyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

hl=line(y j,fy j,'Color''r','Parent',ax1,'Linewidth',2);
set(hl,'linestyle',--','color,'r', linewidth',2)

xlabel('Number of Memphis Earthquakes > 2.5"),

figure(gcf);pause

Questions p 306

4.3.5 The Normal Curve as a Model for Individual Measurements

Definition 4.3.1 A random variable . ‘ ‘ . Floue43s
Y is said to be normally distributed -
with mean p and variance o if S o

£0) =

Area =0.1056

25 .

Il S 1~
0.08 0.085 0.09 0.095 0.105 0.11
Blood Alcohol Level

v

0.4fF

Comment. Areas under and

“arbitrary” normal distribution, f,(y)
are calculated by finding the e ‘
equivalent area under the standard WS A T e T
normal distribution, f,(z):

02 e "\ Area = 0.1056

Figure 10. Figure 4.3.5 from Example 4.3.6. If a driver’s
Pa<Y<h) = P ( a-p _ Efcblgocﬁalcbh}l levep ik .09 andzhe l:{f:e_afha}y_zer has

c arPinstrume@tal ¢rror o= 0.008% (pdf show® in pper
panel), What is the probability that a driver will be
erroneously charged with DUI. The problem can be
analyzed using the pdf for the unscaled data or the data can
be converted to z scores (lower panel) by subtracting the
mean and dividing by ¢. The probability of an erroneous
Example 4.3.6 charge is 10.56%, the area to the right of the cutpoints
% LMex040306_4th.m shown in the normal and standard normal curves.

The ratio Y - p is often referred to
as either a Z®ransformation or a Z
score.
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% Example 4.3.6 Drunk driving pages 308-309 in Larsen & Marx (2006)
% Based on LMex040305 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 1/9/11

% Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% A legally drunk driver in many states has a blood alcohol level of 0.10%,
% but the breathalyzer has measurement error. Repeated measurements

% indicate that the the estimate of the mean is unbiased and sigma is

% 0.004%

% If a driver's true blood alcohol content is 0.095%, what is the

% probability that he will be incorrectly booked on a DUI charge?
mu=0.095;

sigma=0.004;

Observed=0.1;

P=1-normcdf((Observed-mu)/sigma);

fprintf("\nThe approximate p value using the central limit theorem is ')
fprintf("%7.4f\n",P)

% Plot Figure 4.3.5

subplot(2,1,1)

X=0.075:0.0005:0.115;

Y = normpdf(X,mu,sigma);

plot(X,Y,"--1");

axis([0.075 0.115 0 105]);title('Figure 4.3.5','FontSize',14);
axl=gca;

xlabel('Blood Alcohol Level'),

ylabel('f y(y)','FontSize',14);

axl=gca;
set(ax1,'xtick’,0.08:0.005:0.11,'FontSize',12);
set(ax1,'ytick',0:25:100,'FontSize',12)

hold on;
xf=0.1:0.0001:.115;yf=normpdf(xf,mu,sigma);
fill([0.1 xf 0.115],[0 yf 0]',[.8 .8 1])

hold off;

subplot(2,1,2)
X=-3.5:0.01:3.5;

Y = normpdf(X,0,1);
plot(X,Y,'--1');

axis([-3.55 3.55 0 0.42]);
axl=gca;

xlabel('Z-score"),

ylabel('f z(z)','FontSize',14);
axl=gca;
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set(ax1,'xtick',-3.5:0.5:3.5,'FontSize',12);
set(ax1,'ytick',0:0.2:0.4,'FontSize',12)
hold on;
xf=1.25:0.001:3.5;yf=normpdf(xf,0,1);
fill([1.25 xf 3.5],[0 yf O],[.8 .8 1])
figure(gcf);pause

hold off;

subplot(1,1,1)

Example 4.3.7 Mensa p. 309

% LMex040307 4th.m

% Example 4.3.7 Mensa & 1Q Pages
309-310 in

% Larsen & Marx (2006)

Introduction to Mathematical

Statistics, 4th edition s
% Based on LMex040306 4th.m

% Written Fall 2010 by Eugene

Gallagher for EEOS601 Revised:

Figure 4.3.6: Mensa & 1Q
T

0.02—

Area=0.98 " Area=0.02

1/9/11 o

% Eugene.Gallagher@umb.edu W i3 s =
% . .
http://alpha.es.umb.edu/faculty/edg/ﬁFlgure 11. Figure 4.3.6 from Example 4.3.7. A Mensa
les/edgwebp.html score of 133 marks the upper 2% of IQ’s if u=100 and

% A person must be in the upper 2% o=16.

of the population in IQ to join. What is

% the minimum IQ that will qualify a person for membership. Assume that the
% mean IQ is 100 and sigma is 16.

mu=100;

sigma=16;

% Use the inverse of the normal pdf to find the IQ cutoff for the upper 2%
% of the population 0.98=(1-0.02)

IQmensa=norminv(0.98,100,16);

fprintf("\nThe lowest acceptable IQ for membership in Mensa is ')
fprintf('%3.0f.\n',ceil(IQmensa))

% Plot Figure 4.3.6

X=50:150;

Y = normpdf(X,mu,sigma);

plot(X,Y,'--1');

axis([45 155 0 0.03]);title('Figure 4.3.6: Mensa & 1Q','FontSize',20);
axl=gca;

xlabel('1Q','FontSize',16),

ylabel('f y(y)',FontSize',16);

axl=gca;

set(ax1,xtick’,[50 100 133 150],"FontSize',14);


http://alpha.es.umb.edu/faculty/edg/fi

EEOS 601
Applied Statistics
Week 4, P. 30 of 38

set(ax1,'ytick',0:.01:0.03,'FontSize',14)

hold on;
xf=ceil(IQmensa):155;yf=normpdf(xf,mu,sigma);
fill([ceil(IQmensa) xf 1557,[0 yf 0],[.8 .8 1])
text(50,0.007,'Area=0.98','FontSize',18);
text(135,0.007,'Area=0.02",'FontSize',18)
figure(gcf);pause

hold off;

Example 4.3.8 Army Anti-Tank . ‘ Figure 4.3.7: Tank Missile Precision
Missile

% LMex040308 4th.m

% Example 4.3.8 Truck-launced
antitank missile Pages 310-11 in
% Larsen & Marx (2006)
Introduction to Mathematical
Statistics, 4th edition

% Based on LMex040306_4th.m s .
% Written Fall 2010 by Eugene Ditance betwedhrc and g

£,0)

?/;l/lf igher for EEOS601 Revised: Figure 12. Figure 4.3.7 from Example 4.3.8. A Mensa
0 S i —

% Eugene.Gallagher@umb.cdu Z(Z)Irz of 133 marks the upper 2% of 1Q’s if =100 and

% .

http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% The army is soliciting proposlas requiring that the automatic sighting
% mechanism be sufficiently reliable to guarantee that 95% of the missiles
% fall no more than 50 feet short or 50 feet beyond the target. What is the
% largest sigma compatible with that degree of precision. Assume that Y,
% the distance a missile travels is normally distributed with its mean (mu)
% equal to the the length of separation between the truck and the target.
Zvalue=norminv(0.975);

%Zvalue=50/sigma so,

sigma=>50/Zvalue;

fprintf("nThe largest acceptable sigma is %4.2f feet.\n',sigma)

% Plot Figure 4.3.7
=-75:75;
mu=0;
Y = normpdf(X,mu,sigma);
plot(X,Y,"--1");
axis([-75 75 0 0.02));
title('Figure 4.3.7: Tank Missile Precision','FontSize',20);
axl=gca;
xlabel('Distance between truck and target','FontSize',16),
ylabel('f y(y)',FontSize',16);
axl=gca;
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set(ax1,'xtick’,-50:50:50,'FontSize',14,...
"XTickLabel',{'mu-50',)mu','mu+50'},'FontSize',14)

set(ax1,'ytick',0:.01:0.02,'FontSize',14)

hold on;

xf=-50:50;yf=normpdf(xf,mu,sigma);

fill([-50 xf 50]',[0 yf 0]',[.8 .8 1])

figure(gcf);pause

hold off;

Example 4.3.9 Deals with Moment generating functions, not covered in EEOS601

Theorem 4.3.3 Let Y, be a normally distributed random variable with mean u, and
variance d?; and let Y, be a normally distributed random variable with mean u,
and variance o°,. Define Y=Y,+Y,. If Y, and Y, are independent, Y is normally
distributed with mean u,; + u, and variance ¢?; + o7,

Corollary Let Y, Y2, ..., Y, be a random sample of size n from a normal

_ n
distribution with mean u and variance o> Then the sample mean Y = L ) Vs
s

also normally distributed with mean u but with variance equal to ¢*/n (wWhich
Y -p

implies that
c/yn

is a standard normal random variable, Z).

Corollary Let Y,, Y2, ..., Y, be any set of independent normal random variables
with means u,, U, ..., i, and variances o2, a2, ... o°,, respectively. Let a,, a,, ..., a
be any set of constants. Then Y = a,Y, + a,Y, + - + a,Y, is normally distributed

n

n n

. . 2 2

with meanp =Y, a,p. and variance &* =Y. a; c;.
i=1 i=1

Example 4.3.10

% LMex040310_ 4th.m

% Example 4.3.10 Swampwater Tech Elevator Pages 312-313 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Based on LMex040306 4th.m

% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 1/8/11

% Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Swampwater Tech elevators have a maximum capacity of 2400 1b. Suppose
% that ten Swampwater Tech football players enter the elevator and that the
% football player weights are normally distributed with mean = 220 1b and
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% standard deviation = 20 Ib. What is the probability that there will be 10

% fewer football players at tomorrow's practice.

mu=220;

sigma=20;

n=10;

P=1-normcdf(240,mu,20/sqrt(n));

fprintf("\nThe probability of an elevator collapse is %4.2g.\n",P)

P2=1-normcdf(2400,mu*n,sqrt(n)*20);

fprintf("\nThe probability of an elevator collapse is %4.2g.\n',P2)

% If 11 players baoarded the elevator

n=11;

P3=1-normcdf(2400,mu*n,sqrt(n)*20);

fprintf("\nlf 11 players entererd the elevator, the expected weight \n')

fprintf('is %4.0f b, and the probability of collapse is %5.3f.\n',...
mu*11, P3);

Example 4.3.11

% LMex040311 4th.m

% Example 4.3.11 Aptitude tests for a corporation Pages 313-314 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Based on LMex040306 4th.m

% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 1/8/11

% Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% The personnel department gives a verbal (Y1) and quantitative aptitude
% (Y2)test to all applicants. Y1 is normally distributed with mul=50 and

% sigmal=20 and Y2 has mu2=100 and sigma2=20. Scores are independent. A
% composit score is assigned to each applicant: Y=3Y1+2Y2. The company
% rejects any applicant whose score is less than 375. If six individuals

% apply, what are the chances that fewer than half will fail the screening

% test?

mul=50;

sigmal=10;

mu2=100

sigma2=20

cutoff=375;

n=>0;

EY=3*mul+2*mu2;

VarY=3"2*sigmal”2+2"2*sigma2"2;

fprintf('For a single applicant, the expected score is %3.0f with ,EY)
fprintf('variance = %4.0f\n',VarY);

Zscore=((375-EY)/sqrt(VarY))

P=normcdf(Zscore,0,1);

fprintf('The probability of a single applicant being rejected is %6.4f.\n',P)
fprintf("'What is the probability that at most 2 of 6 will fail the test?\n');
P2=binocdf(2,6,P);
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fprintf('The probability that fewer than half of 6 applicants will fail\n')
fprintf('the test is %6.4f.\n',P2)

Example 4.3.12

% LMex040312 4th.m

% Example 4.3.12 Pages 314 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Based on LMex040306 4th.m

% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 1/8/11
% Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% An application of propagation of error

% Y=random sample of size 9 from a normal distribution with:

EY=2;

SigmaY=2;

nY=9;

% Ystar=independent random sample of size 4 from a normal distribution with
EYstar=1;

SigmaYstar=1;

nYstar=4;

% Find Probability mean(Y)>=mean(Y star)

E YminusYstar=EY-EYstar;

% Var_YminusYstar= VarY+VarYstar

format rat

Var YminusYstar=SigmaY”2/nY+SigmaYstar"2/nY star

format

P=1-normcdf((0-E_YminusYstar)/sqrt(Var YminusYstar));

fprintf('The probability that Y >= Ystar = %6.4f\n',P)

4.4 The geometric distribution Not covered in Summer 2011
Example 4.4.1 Available on course website
Theorem 4.4.1
Example 4.4.2 Available on course website
Example 4.4.3 Not programmed. (Not really a Matlab-type problem)
Example 4.4.4 Not programmed.
Questions p. 321

4.5 THE NEGATIVE BINOMIAL DISTRIBUTION
Theorem 4.5.1
Example 4.5.1 Programmed in Matlab, but difficult
Questions p. 326

4.6 THE GAMMA DISTRIBUTION, p. 296. Waiting time for the rth event to

occur

Theorem 4.6.1

N r-1 Ly >
(r—l)!y e y>0.

£) =
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Example 4.6.1 Programmed as an example of the symbolic math toolbox
4.6.1 Generalizing the Waiting Time Distribution
Theorem 4.6.2
Definition 4.6.2
Theorem 4.6.3
4.6.2 Sums of Gamma Random Variables
Theorem 4.6.4
Example 4.6.2
Theorem 4.6.5
4.7  TAKING A SECOND LOOK AT STATISTICS (MONTE CARLO
SIMULATIONS)
4.7.1 Monte Carlo simulations are often used when the underlying probability
model is complex
4.7.2  Section 4.7 analyzes a compound probability problem involving a
Poisson/exponential process and a normal pdf
4.7.3 A 2-year warranty is offered for a plasma TV
4.7.4 Lambda = 0.75 service calls per year at an average cost of $100 per repair
(0=20)
4.7.5 s the $200 2-year warranty a good deal?
4.7.6 Not mentioned by Larsen & Marx (2006), but the expected repair cost =
2*.75*$100=%$150, but what is the variance?
4.7.6.1 “For any particular customer, the value of W [the warranty] will
depend on (1) the number of repairs needed in the 1* two years
and (2) the cost of each repair. Although we have reliability and
cost assumptions that address(1) and (2), the 2-yr limit on the
warranty introduces a complexity that goes beyond what we have
learned in Chapters 3 and 4. What remains is the option of using
random samples to simulate the repair costs that might accrue
during those first two years.” [p. 333]

% LMO0407_4th.m

% A Monte Carlo simulation with graphics of the cost of a warranty

% A simulation combining the exponential pdf and Poisson pdf

% For a plasma TV screen, the sreen is expected to require 0.75 service
% calls per year. The cost of normally distributed and independently

% distributed service calls have mean=$100 and sigma=20. Should the buyer
% buy a warranty costing $200 for two years.

% Written by Eugene.Gallagher@umb.edu for EEOS601 1/10/11

% Revised

% Theorem 4.2.3 (Larsen & Marx 2006, P. 290) implies that the interval
% between repairs will follow the exponential distribution
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% Figure 4.7.1 o5 ‘ Figure 4.7.1
lambda=0.75; o
mu=100; '
sigma=20; T
y=0:.1:4.5; Nl
fyy=exppdf(y,1/lambda); % Note Soer
that Matlab's exp pdf is defined 03

% differently from 02|
Larsen & Marx. Must enter R

% 1/lambda to . ‘ ‘ T
observe same result. ’ 1 Iteval btween epaicals ) )
plqt(y,fyy,'——r','LineWidth',3); Figure 13. Figure 4.7.1 An application of Matlab’s
ax1ls([0. 4.400.8]) exponential distribution, which is defined differently from
axl=gca; —0) 14 S5 foue
set(ax | xtick’[0:4] FontSize' 14, Fon Larson & Marx (2006). y=0:.1:4.5;fyy=exppdf(y,1/lambda)
tSize',14)
axl=gca;

xlabel('Interval between repair calls (yr)','FontSize',16);
ylabel('f y(y)','FontSize',16),

title('Figure 4.7.1','FontSize',20);

figure(gcf)

pause

% Plot4.7.2 using I Figure 4,7.2:0?‘st‘of~8creen Repair
LMex040308 4th.m as model con
X=38:162;

mu=100;

sigma=20;

Y = normpdf(X,mu,sigma);
plot(X,Y,--r','LineWidth',3);
axis([35 165 0 0.021]);
title('Figure 4.7.2: Cost of Screen

L 001

____

Repair','FontSize',20); s sgmar sir R
axl=gca; ‘ o

xlabel('Cost', FontSize', 16) Figure 14. Figure 4.7.2 An application of Matlab’s normal
ylabel('f c(c)',FontSize',16); pdf. Page 334 in Larsen & Marx (2006), page 334.
axl=gca;

set(ax1,'xtick’,[40 100 160],'FontSize',14,...
"XTickLabel',{'$40(mu-3 sigma)','$100",'$160 (mu+3 sigma)'},...
'FontSize',14)

set(ax1,'ytick',0:.01:0.02,'FontSize',14)

figure(gcf);pause

% Program with nested for loop
Trials=100;
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time=0;
COSTS=zeros(Trials,1);
for i=1:Trials
cost=0;
time=0;
while time<=2
time=exprnd(1/lambda)+time;
if time<=2
cost=cost+normrnd(mu,sigma);
end
end
COSTS(1)=cost;
end
fprintf(...
'The max, median, and mean repair bills are $%4.0f, $%3.0f, and $%3.0f.\n’,...
max(COSTS),median(COSTS),mean(COSTY));
fprintf("%4.1f%% of customers had no repair costs.\',sum(~COSTS)/Trials*100)

% Use the code from page 5-115 of Statistics toolbox & Ex040302 4th.m
% to draw histogram, Figure 4.7.6 _ Fique47s Tral= 100
if max(COSTS)>400; -

maxbin=ceil(max(COSTS)/200)*200 ]

else

Frequency

=]

maxbin=ceil(max(COSTS)/100)*100

9

end , L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

edges=0:50:maxbin; Simuiated repair osts
N=histc(COSTS,edges); C10° ‘ r:igure 478, T‘rials:1000000‘
bar(edges,N,1,'histc'); ]
maxf=ceil(max(N)/5)*5; ’
axl=gca; -
set(get(gca,'Children'),'FaceColor',[.8
81)])

axis([0 maxbin 0 1.05*maxf])
ylabel('Frequency','FontSize',16);
xlabel('Simulated repair
costs','FontSize',16)
set(ax1,'xtick',edges, FontSize',14); o 20 Y T a0 1200
1f maxf<20

o

Frequency

05

Figure 16. Figure 4.7.6 The result of 1 million Monte
Carlo simulations of repair costs. Page 336 in Larsen &
Marx (2006), page 334. The max, median, and mean repair
bills are $1037, $119, and $150. 22.3% had no repair costs

set(ax1,'ytick',0:5:maxf,'FontSize',14)
elseif maxf<50
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set(ax1,'ytick',0:10:maxf,'FontSize',14)
elseif maxf<100
set(ax1,'ytick',0:20:maxf,'FontSize',14)
elseif maxf<500
set(ax1,'ytick',0:100:maxf,'FontSize',14)
elseif maxf<1000
set(ax1,'ytick',0:200:maxf,'FontSize',14)
elseif maxf<10000
set(ax1,'ytick',0:1000:maxf,'FontSize',14)
elseif maxf<100000
set(ax1,'ytick',0:10000:maxf,'FontSize',14)
end
s=sprintf('Figure 4.7.6, Trials=%7.0f, Trials);
title(s,'FontSize',20);
figure(gcf);pause

Appendix 4.A.1 Mintab applications
Appendix 4.A.2. A proof of the central limit theorem
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